49 research outputs found

    Granger Causality Mapping during Joint Actions Reveals Evidence for Forward Models That Could Overcome Sensory-Motor Delays

    Get PDF
    Studies investigating joint actions have suggested a central role for the putative mirror neuron system (pMNS) because of the close link between perception and action provided by these brain regions [1], [2], [3]. In contrast, our previous functional magnetic resonance imaging (fMRI) experiment demonstrated that the BOLD response of the pMNS does not suggest that it directly integrates observed and executed actions during joint actions [4]. To test whether the pMNS might contribute indirectly to the integration process by sending information to brain areas responsible for this integration (integration network), here we used Granger causality mapping (GCM) [5]. We explored the directional information flow between the anterior sites of the pMNS and previously identified integrative brain regions. We found that the left BA44 sent more information than it received to both the integration network (left thalamus, right middle occipital gyrus and cerebellum) and more posterior nodes of the pMNS (BA2). Thus, during joint actions, two anatomically separate networks therefore seem effectively connected and the information flow is predominantly from anterior to posterior areas of the brain. These findings suggest that the pMNS is involved indirectly in joint actions by transforming observed and executed actions into a common code and is part of a generative model that could predict the future somatosensory and visual consequences of observed and executed actions in order to overcome otherwise inevitable neural delays

    Imitation of hand and tool actions is effector-independent

    Get PDF
    Following the theoretical notion that tools often extend one’s body, in the present study, we investigated whether imitation of hand or tool actions is modulated by effector-specific information. Subjects performed grasping actions toward an object with either a handheld tool or their right hand. Actions were initiated in response to pictures representing a grip at an object that could be congruent or incongruent with the required action (grip-type congruency). Importantly, actions could be cued by means of a tool cue, a hand cue, and a symbolic cue (effector-type congruency). For both hand and tool actions, an action congruency effect was observed, reflected in faster reaction times if the observed grip type was congruent with the required movement. However, neither hand actions nor tool actions were differentially affected by the effector represented in the picture (i.e., when performing a tool action, the action congruency effect was similar for tool cues and hand cues). This finding suggests that imitation of hand and tool actions is effector-independent and thereby supports generalist rather than specialist theories of imitation

    Why I tense up when you watch me: inferior parietal cortex mediates an audience’s influence on motor performance

    Get PDF
    The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output

    Leadership in Orchestra Emerges from the Causal Relationships of Movement Kinematics

    Get PDF
    Non-verbal communication enables efficient transfer of information among people. In this context, classic orchestras are a remarkable instance of interaction and communication aimed at a common aesthetic goal: musicians train for years in order to acquire and share a non-linguistic framework for sensorimotor communication. To this end, we recorded violinists' and conductors' movement kinematics during execution of Mozart pieces, searching for causal relationships among musicians by using the Granger Causality method (GC). We show that the increase of conductor-to-musicians influence, together with the reduction of musician-to-musician coordination (an index of successful leadership) goes in parallel with quality of execution, as assessed by musical experts' judgments. Rigorous quantification of sensorimotor communication efficacy has always been complicated and affected by rather vague qualitative methodologies. Here we propose that the analysis of motor behavior provides a potentially interesting tool to approach the rather intangible concept of aesthetic quality of music and visual communication efficacy

    Taking two to tango:fMRI analysis of improvised joint action with physical contact

    Get PDF
    <div><p>Many forms of joint action involve physical coupling between the participants, such as when moving a sofa together or dancing a tango. We report the results of a novel two-person functional MRI study in which trained couple dancers engaged in bimanual contact with an experimenter standing next to the bore of the magnet, and in which the two alternated between being the leader and the follower of joint improvised movements. Leading showed a general pattern of self-orientation, being associated with brain areas involved in motor planning, navigation, sequencing, action monitoring, and error correction. In contrast, following showed a far more sensory, externally-oriented pattern, revealing areas involved in somatosensation, proprioception, motion tracking, social cognition, and outcome monitoring. We also had participants perform a “mutual” condition in which the movement patterns were pre-learned and the roles were symmetric, thereby minimizing any tendency toward either leading or following. The mutual condition showed greater activity in brain areas involved in mentalizing and social reward than did leading or following. Finally, the analysis of improvisation revealed the dual importance of motor-planning and working-memory areas. We discuss these results in terms of theories of both joint action and improvisation.</p></div

    Perceptual Load-Dependent Neural Correlates of Distractor Interference Inhibition

    Get PDF
    The load theory of selective attention hypothesizes that distractor interference is suppressed after perceptual processing (i.e., in the later stage of central processing) at low perceptual load of the central task, but in the early stage of perceptual processing at high perceptual load. Consistently, studies on the neural correlates of attention have found a smaller distractor-related activation in the sensory cortex at high relative to low perceptual load. However, it is not clear whether the distractor-related activation in brain regions linked to later stages of central processing (e.g., in the frontostriatal circuits) is also smaller at high rather than low perceptual load, as might be predicted based on the load theory.We studied 24 healthy participants using functional magnetic resonance imaging (fMRI) during a visual target identification task with two perceptual loads (low vs. high). Participants showed distractor-related increases in activation in the midbrain, striatum, occipital and medial and lateral prefrontal cortices at low load, but distractor-related decreases in activation in the midbrain ventral tegmental area and substantia nigra (VTA/SN), striatum, thalamus, and extensive sensory cortices at high load.Multiple levels of central processing involving midbrain and frontostriatal circuits participate in suppressing distractor interference at either low or high perceptual load. For suppressing distractor interference, the processing of sensory inputs in both early and late stages of central processing are enhanced at low load but inhibited at high load

    Placing actions in context: motor facilitation following observation of identical and non-identical manual acts

    No full text
    It has been argued that through a process of internal ‘simulation’, we automatically map observed actions directly onto our motor system to facilitate imitation. Instead, here we show that observed actions influence the kinematic parameters of manual responses in a dynamic, context-dependent fashion. Participants observed object-directed hand actions in imitative and complementary action contexts, and performed identical (same grip-type) and non-identical (opposite grip-type) responses to a similar object, respectively. In imitative contexts, identical actions were performed optimally. In complementary contexts, however, non-identical actions were enhanced relative to identical actions. A further experiment using arrow cues instead of hand actions confirmed that these results were specific to action observation. Our findings demonstrate that action context plays a critical role in determining the relationship between action observation and execution. Crucially, this relationship is not fixed, but depends on an agent’s goal when observing others act

    Understanding the flexibility of action-perception coupling

    Get PDF
    Contains fulltext : 77207.pdf (publisher's version ) (Open Access)The idea that observing an action triggers an automatic and obligatory activation of an imitative action in the motor system of the observer has recently been questioned by studies examining complementary actions. Instead of a tendency for imitation, cooperative settings may facilitate the execution of dissimilar actions, resulting in a relative disadvantage for imitative actions. The present study aimed at clarifying the contribution of associative learning and interference of task representations to the reversal of congruency effects. To distinguish between the two, an experiment was designed, in which we increased the effects of associative learning and minimized the effects of task interference. Participants completed a series of imitation and complementary action runs, in which they continuously imitated or complemented the actions of a virtual co-actor. Each run was alternated with a test run showing the same actions but including color-cues, and the participants were instructed to respond to color instead of the actor's posture. Reaction times to test runs showed no reversal of facilitation effects between the imitation and complementary action conditions. This result strongly argues that associative learning cannot adequately account for reversed facilitation effects. Our study provides additional support for action-perception models that allow flexible selection of action-perception coupling and challenges the existing models purely based on stimulus-response associations.9 p
    corecore